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Scheme for entangling atom-photon pairs
via an input light in superposition state
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We propose a feasible scheme to create macroscopically entangled atom-photon pairs by preparing an input
optical superposition state. Several interesting non-classical quantum statistical effects like the atomic
squeezed effects are clearly demonstrated. The making and manipulation of entangled atom-photon pairs
are useful for, e.g., high-precision interferometry and quantum information science.
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The experimental realizations of Bose-Einstein conden-
sation (BEC) in the alkali atomic gas have led to many
remarkable advances over the traditional framework of
atomic, molecular, and optical physics[1,2]. One of these
advances having close relation with the present work is
to make and probe an atom laser, since the first pulsed
atom laser was created by the MIT group in 1997 by us-
ing a radio frequency (RF) pulse to out-couple an initially
trapped Bose condensate into a propagating state[3]. The
novel properties of the atom laser have been investigated
both theoretically and experimentally. For example, in
analogy with an optical laser, the atomic wave mixing
and superradiance[4] were demonstrated and more re-
cently, the remarkable effect of Hanbury-Brown-Twiss
(HBT) interference was observed by several groups with
both ultracold bosonic and fermionic atoms[5].

The possibility of coherent control of the quantum
properties of the atom laser beam is one of the active
research issues for the community of ultracold matter-
wave physics. Several schemes have been proposed by
exploiting the nonlinear atomic interactions[6−10], such as
the creation of quantum squeezing and entanglement in
two atomic beams by using the nonlinear spin-exchange
collisions[10]. The making and manipulation of the atom
lasers with non-classical properties will be extremely use-
ful for various fields from high-precision atom interferom-
etry to quantum information science[1,2].

Recently, another novel scheme has also attracted much
interest, the basic idea of which is coherent conversion of
non-classicality from the initial input light to the output
atoms and thereby is very different from the nonlinear-
collision-based scheme[11−15]. In particular, by using a
squeezed input light[11−13], the quantum statistical prop-
erties of the light can be efficiently converted to the out-
put fields, which was first predicted with a single-mode
approach[11−13] and then in a multi-mode configuration.
This scheme was also generalized to create a squeezed
light from spin-squeezed atoms by Poulsen et al . or to en-
tangle the output atom-photon or atom-atom pairs via
an input squeezed light by Haine et al .[14,15], and thus
was promising to find potential applications in the fields
of, e.g., quantum memory and quantum cryptography.

In this letter, we demonstrate theoretically that the
macroscopic entangled atom-photon pairs can be created
by applying a RF field initially prepared in a superposi-
tion state (through, e.g., a nonlinear Kerr medium[16]).
The basic mechanism is to transfer the nonclassicality of
the entrance-channel photons to the closed-channel atom-
photon pairs (for this purpose, the nonlinear inter-atomic
interactions should be tuned to near zero by using a Fes-
hbach resonance technique or by starting from a dilute
atomic sample[17]). Our study shows several interesting
non-classical properties in the output fields, indicating
that this so-called quantum conversion process can be
realized by almost any kind of input non-classical light,
not only by a squeezed light.

For simplicity, we still adopt the simplest single-mode
approach by assuming a two-state atom (states |1〉 and
|2〉) with the initial condensation occurring in a trapping
state |1〉. State |2〉, which has different trapping prop-
erties and is typically unconfined by the magnetic trap,
is coupled to |1〉 by a RF field tuned near the |1〉 → |2〉
transition with frequency ω0. Thus, the interaction of the
field may generate condensate in state |2〉 from an ini-
tial condensate that is totally in state |1〉. The Hamilto-
nian we consider here is therefore a linear-coupled atom-
photon system, for which the interacting part is (h̄ = 1):
Hint = ω

′
R(ab1b

†
2 + a†b†1b2), in terms of the creation and

annihilation operators, b†1, b
†
2, b1, and b2, of bosonic atoms

for the magnetically trapped state |1〉 and the untrapped
state |2〉 with level difference ω0, a† and a are the cre-
ation and annihilation operators of the optical field with
frequency ωa. Here ω

′
R =

√
ωa/2ε0V , V is the effective

mode volume and ε0 is the vacuum permittivity[17].
In Bogoliubov approximation, we can ignore the slow

change of the large number Nc of condensed atoms in the
trap by replacing operators b1 and b†1 with a c-number√
Nc. Hence the trapped component initially in a co-

herent state |α〉, b1|α〉 =
√
Nce−iθ|α〉, remains in such

a state while another component |Φ(0)〉 is governed by
the Bogoliubov approximate Hamiltonian[11−13]. After
averaging over the coherent state |α〉, we get the Heisen-
berg equations for the operators b2 and a, which can be
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solved analytically by diagonalizing the coefficient ma-
trix. For the specific case with a resonance frequency
(ωa = ω0 = ω), one can obtain the solutions(

b(t)
a(t)

)
=

(
cos(ωRt) −i sin(ωRt)e−iθ

−i sin(ωRt)eiθ cos(ωRt)

)

×
(
b(0)
a(0)

)
e−iωt, (1)

where ωR = ω
′
R

√
Nc and b2 is rewritten as b. Now we

suppose that the initial state of the system is theoreti-
cally described as |ψ(0)〉 = |α〉 ⊗ |Φ(0)〉 with |Φ(0)〉 =
|0〉b ⊗ |SP〉a. Here |0〉b represents that the initial un-
trapped state |2〉 is a vacuum state since there is no
occupying atom in it. And the initial RF field is pre-
pared in a macroscopic superposition of distinct coher-
ent state as an optical analog to Schrödinger cat state:
|SP〉a = c0|p0〉+c1|p1〉, which could also be considered as
a special kind of qubit consisting of two Glauber coherent
states, i.e., |pi〉 = exp[pia

†(0) − p∗i a(0)]|0〉a (i = 1, 2).
Through the time evolution operator U(t) = e−iHt, the
state of the system is derived as

|Φ(t)〉 = U(t)[c0ep0a†(0)−p∗
0a(0)+c1ep1a†(0)−p∗

1a(0)]|0〉a⊗|0〉b
= c0|λp0〉a ⊗ |iηp0〉b + c1|λp1〉a ⊗ |iηp1〉b, (2)

where λ = cos(ωRt), η = sin(ωRt)e−iθ, and we have
used the properties of the evolution operator, i.e.,
U †(t)SU(t) = S(t) and U(t)|0〉 = |0〉 for any operator
S. This state is essentially an entanglement or non-local
superposition of the quasi-classical product state of two
coherent states, i.e., the entangled coherent state pointed
out earlier in the context of nonlinear Mach-Zehnder
interferometer[18]. There is a similarity between this
state and the entangled photon-number state which has
been discussed in testing Bell’s inequalities[19]. Besides,
it is noted that the displacement amplitude of the output
atomic field conditionally depends on the “logic values”
of RF field, if one takes it as a special kind of qubit. After
obtaining the state of system at any time, one could also
conveniently study several interesting problems, such as
the decoherence factor due to the environmental noise or
the Pancharatnam phase[20].

Now we start to consider the interesting quantum con-
versions of the non-classical effects, such as the super-
Poisson distribution and the quadrature squeezing effect,
between the RF field and the output atomic field. Just
for the convenience, here we suppose pi (i = 1, 2) be-
ing real numbers. Using the above solutions, it is easy
to compute the average numbers and the fluctuations
of the output atoms, e.g., 〈Nb(t)〉 = C0 sin2(ωRt) and
〈N2

b (t)〉 = C1 sin4(ωRt) + C0 sin2(ωRt) cos2(ωRt), where
C0 := 〈SP|a†(0)a(0)|SP〉 =

∑2
i=1 c

2
i p

2
i + γ1γ2, and

C1 :=〈SP|a†(0)a(0)a†(0)a(0)|SP〉

=
2∑

i=1

c2i p
2
i (1 + p2

i ) + γ1(1 + p0p1)γ2, (3)

with γ1 = 2c0c1p0p1, γ2 = exp[− 1
2 (p0 − p1)2]. Similar

results can be also obtained for the out-state photons. In

order to decide the statistical properties of a quantum
field, we can define the Mandel’s Q parameter[21]

Qb(t)=
〈ΔN2

b (t)〉
〈Nb(t)〉 −1

{
< 0 : sub−Poisson distribution,
= 0 : Poisson distribution,
> 0 : super−Poisson distribution.

(4)
From the obtained general solutions, the Q parameters
of the RF field and the output atomic field can be found
to have the following structure:(

Qa(t)
Qb(t)

)
= [

C1 − C2
0

C0
− 1]

(
cos2(ωRt)
sin2(ωRt)

)
. (5)

For the case c0 = c1 = 1/
√

2, p0 = −p1 = p,
the initial state (t = 0) is |Φ(0)〉 = |0〉 ⊗ |SP〉 with
|SP〉 = 1√

2
(|p〉+ |− p〉), and the above structure factor is

F (m) :=
C1 − C2

0

C0
− 1 =

1 + γ2

1 − γ2
γ2p

2 > 0, (6)

where we have defined γ2 = e−2p2
. Thereby in the ini-

tial state (t = 0), we can obtain the results Qa(t) > 0
and Qb(t) = 0, which means that the initial state of the
RF field is in a super-Poisson distribution and the ini-
tial atomic field is in a vacuum state, as they should
be. When the evolution time t0 satisfies cos(ωRt0) = 0
or ωRt0 = (n + 1

2 )π (n = 0, 1, 2, · · ·), we have Qa(t) =
0, Qb(t) > 0, which means that the quantum state of the
RF field transforms from the initial superposition state
into a coherent state while the output matter wave is now
in a superposition state. This result is actually a general
feature of the quantum conversion scheme, which in this
case restores the factorized structure as the initial state
of the system. In addition, the revealed periodically os-
cillating behaviors of the quantum fields hold the promise
to be observed, at least in principle, in the next genera-
tion of matter-wave experiments.

In order to study the quadrature squeezing of the out-
put atomic beam, we can define the field quadraturesX1b

and X2b as X1b = 1
2 (b+ b†), X2b = 1

2i (b− b†). Following
Buz̆ek et al.[22], we introduce the squeezed coefficients

Si =
〈(ΔXi)2〉 − 1

2 |〈[X1, X2]〉|
1
2 |〈[X1, X2]〉|

, i = 1, 2, (7)

which, by taking into account of (θ = 0, p ∈ R)

〈b2(t)〉 = − sin2(ωRt)e−2iωt〈SP|a2(0)|SP〉,

〈SP|a2(0)|SP〉 =
2∑

i=1

c2i p
2
i + c0c1γ2

2∑
i=1

p2
i , (8)

finally leads to the simple results

S1b(t) = 2p2 sin2(ωRt)[1 − γ2 − cos(2ωt)],

S2b(t) = 2p2 sin2(ωRt)[1 − γ2 + cos(2ωt)], (9)

for c0 = c1 = 1/
√

2, p0 = −p1 = p, with γ2 = e−2p2 ∈
(0, 1]. Obviously, for the initial state of the atomic field, it
yields S1b(0) = S2b(0) = 0, which means that there is no
squeezing, as it should be. When the evolution time satis-
fies cos(2ωt) > 1−γ2, we can get S1b < 0, S2b > 0, which
means that the quadrature component X1b is squeezed.
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But when it satisfies cos(2ωt) < γ2 − 1, we will have
S1b > 0, S2b < 0, which means that the squeezing ef-
fect transfers to X2b component. The similar behavior
also happens for the RF field. Clearly, the conditions of
super-Poisson distribution and quadrature squeezing are
quite different, as they should be generally.

However, if the initial state of the RF field is chosen as
an optical superposition state: |SP〉 = 1√

2
(|p〉 − | − p〉),

one can reach

S1b(t) = 2p2 sin2(ωRt)[1 + γ2 − cos(2ωt)] ≥ 0,

S2b(t) = 2p2 sin2(ωRt)[1 + γ2 + cos(2ωt)] ≥ 0. (10)

This means that there is no squeezing effect at any time,
which is actually a well-known fact for such type of initial
input states.

The peculiar behaviors about the quadrature squeez-
ing clearly show the key impact of the initial state of the
RF field on the quantum feature of the output atomic
beam. Of course, the basic structure of the Mandel’s Q
parameter still holds right since it is directly from the
linear-coupling model and therefore independent of the
concrete state form of the initial light, which should be
noted also for that using a squeezing input light[11−13].

In addition, one could also analyze the quantum
correlation[1,17] of the RF field and the output atomic
beam by computing the second-order zero-time correla-
tion function[21] and thereby study the interesting possi-
ble violation of the classical Cauchy-Schwarz inequality
(CSI) which, according to Reid et al.[23], could be ac-
companied with the violation of Bell’s inequality[21]. By
following the similar calculations as above, this calcula-
tion will be quite straightforward.

The realization of atom-photon entanglement is of in-
terest for current study of high-precision interferometry
and quantum information physics[11−13,24]. Thereby,
we expect our scheme can be adjusted and improved
so that one could generate the maximally entangled
state between the RF field and the output atomic beam,
and even the entangled atom-atom pairs by applying a
squeezed or superposition light to different parts of an
atomic BEC[16,24]. In our future work, we plan to study
the creation of entangled atom-photon pairs by using a
fermionic atomic sample in an optical lattice[2,25−27] or
a multi-species Bose-Fermi mixture[28], with or without
binary collisions between the atoms of the propagating
mode[8].

This work was supported in part by the National Nat-
ural Science Foundation of China (No. 10874041) and
the Henan Province Rencai Program.
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